Requirements in Setting the Environmental Safety Quality of Recycled Materials in Construction

Hirofumi Sakanakura National Institute for Environmental Studies

Contents

Environmental Standard, Countermeasure Law, and Test mthods

 Environmental Safety Quality of Recycled Materials in Construction

Standardization

Environmental Standard

- A standard that should be maintained in order to protect human health and the living environment.
- The goal is to keep the air, water, soil, and noise at the end when implementing measures, not as a minimum limit.
- It is stipulated based on the scientific knowledge that can be obtained, and it is necessary to constantly collect new scientific knowledge and make appropriate scientific judgments.

Water quality standard (public water area)

- Concerning the environmental conditions related to water pollution in public water areas pursuant to Article 16 of the Basic Environment Law, it is desirable to maintain it in order to protect human health and preserve the living environment.
- *Public water areas: rivers, lakes, harbors, coastal waters and other public water areas, and public waterways connected to them, irrigation waterways and other public water paths

Groundwater quality standard

 Standards that should be maintained in order to protect human health regarding environmental conditions related to water pollution of groundwater pursuant to Article 16 Paragraph 1 of the Basic Environmental Law

⇒ Prefectures regularly survey specific points and report to the national government

Environmental Standard for Public water and groundwater for the protection of human health in Japan

Item	Standard Values	ltem	Standard Values	
Cadmium	0.003 mg/L	1,1,2-trichloroethane	0.006 mg/L	
Total Cyanogen	not detectable	Trichloroethylene	0.01 mg/L	
Lead	0.01 mg/L	Tetrachloroethylene	0.01 mg/L	
Chromium (VI)	0.05 mg/L	1,3-dichloropropene	0.002 mg/L	
Arsenic	0.01 mg/L	Thiraum	0.006 mg/L	
Total Mercury	0.0005 mg/L	Simazine	0.003 mg/L	
Alkyl Mercury	not detectable	Thiobencarb	0.02 mg/L	
РСВ	not detectable	Benzene	0.01 mg/L	
Dichloromethane	0.02 mg/L	Selenium	0.01 mg/L	
Carbon Tetrachloride	0.002 mg/L	Nitrate and nitrite	10 mg/L	
1,2-dichloroethane	0.004 mg/L	Fluorine	0.8 mg/L	
1,1-dichloroethylene	0.1 mg/L	Boron	1 mg/L	
Sis-1,2-dichloroethylene	0.04 mg/L	1,4-dioxane	0.05mg/L	
1,1,1-trichloroethane	1 mg/L			

Discharge Water Criteria in Japan (Hazardous substances)

ltem	Standard Values	ltem	Standard Values
Cadmium	0.03 mg/L	1,1,2-trichloroethane	0.06 mg/L
Total Cyanogen	1 mg/L	Trichloroethylene	0.1 mg/L
Lead	0.1 mg/L	Tetrachloroethylene	0.1 mg/L
Chromium (VI)	0.5 mg/L	1,3-dichloropropene	0.02 mg/L
Arsenic	0.1 mg/L	Thiraum	0.06 mg/L
Total Mercury	0.005 mg/L	Simazine	0.03 mg/L
Alkyl Mercury	not detectable	Thiobencarb	0.2 mg/L
РСВ	0.003 mg/L	Benzene	0.1 mg/L
Dichloromethane	0.2 mg/L	Selenium	0.1 mg/L
Carbon Tetrachloride	0.02 mg/L	Nitrate and nitrite	100 mg/L
1,2-dichloroethane	0.04 mg/L	Fluorine	0.8 mg/L
1,1-dichloroethylene	1 mg/L	Fluorine (sea)	15 mg/L
Sis-1,2-dichloroethylene	0.04 mg/L	Boron	1 mg/L
1,1,1-trichloroethane	3 mg/L	Boron (sea)	230 mg/L
		1,4-dioxane	0.5mg/L

Mutual Relationships of Water-related Environmental Standard/Criteria

Japan's case 7

Mutual Relationships of Water-related Environmental Standard/Criteria

How soil contamination induces health risks

- 1. <u>Direct ingestion of contaminated soil (including soil particulate)</u>
- 2. Dermal absorption
- 3. Ingestion of groundwater contaminated by hazardous substances eluted from contaminated soil
- 4. Inhalation of hazardous substances emitted from contaminated soil to atmosphere
- Discharge of soil containing hazardous substances to municipal waterways → accumulation in aquatic ecology → ingestion by human beings
- Accumulation of hazardous substances in crops and livestock raised on contaminated land → ingestion by human beings

Ministry of the Environment Japan g^{9}

Exposure pathways considered in Soil contamination countermeasure act

Direct Ingestion
 ⇒ Extractable fraction in stomach
 "Acid extraction test"

Ingestion of groundwater
 ⇒ Released concentration in a liquid
 "Leaching test"

Acid extraction test (Content test)

MOE Notification No.19 (2003) for contaminated soil

6 g of <2-mm soil 200 mL of 1M-HCl 2 h horizontal shaking filtration by 0.45 um membrane filter

Soil Leaching test (Batch test)

Japanese Environmental Agency Notification No.46, 1991 (JLT-46)

Drying and Sieving < 2 mm

Take > 50 g

Water

L/S = 10 (L/kg)

Leaching 6 hours by shaking

Centrifugation

Filtration using 0.45 mm membrane filter

Criteria in Soil Contamination Countermeasure Act (Metals)

		Soil Contamination Countermeasure act			
	EQS for Soil*	Leac	Contont		
		1 st Criteria	2 nd Criteria	Content	
Test method	JLT46 (1991)	MOE Ntf. No.18 (2003)		MOE N ff . No.19 (2003)	
Unit	mg/L	mg/L	mg/L	mg/kg	
Cadmium	0.01**	0.01	0.3	150	
Lead	0.01	0.01 0.3		150	
Cr(VI)	0.05	0.05 1.5		250	
Arsenic	0.01***	0.01 0.3		150	
Total-Hg	0.0005	0.0005 0.005		15	
Alkyl-Hg	Not detected	Not detected	-	-	
Selenium	0.01	0.01	0.01	150	
Fluorine	0.8	0.8	24	4000	
Boron	1	1	30	4000	

* Natural source, stock yard and waste landfill are excluded

** Agriculture field: 1 mg/kg-rice

*** Rice field: 15 mg/kg-soil

Contents

- Environmental Standard, Countermeasure Law, and Test methods
- Environmental Safety Quality of Recycled Materials in Construction
- Standardization

Recycled Materials in Construction

Recycled Materials in Construction

Construction and Demolition

Surplus Soil 140 Mm³ Demolished Asphalt Concrete20 Mt Demolished Concrete 30 Mt Sludge 7.5 Mt Discarded Plaster Board, etc. 1.8 Mt

Ferrous and Nonferrous Slag

Blast Furnace Slag 23 Mt BOF Slag 10 Mt EAF Slag 3.0 Mt Copper Slag 3.0 Mt Ferronickel Slag, etc. 2.3 Mt

Coal Combustion Ash 12 Mt

Fly Ash Clinker (Bottom) Ash

Municipal Wastes and Sewage Sludge 5.1 Mt

Incinerator Bottom Ash and Melt-solidified Slag Sewage Sludge Treated Residue etc. 2.4 Mt

Melt-solidified Slag from Bottom ash and Fly ash

Takuma co.

Melt-solidified Slag from **Gasification-Melting of MSW**

Kobelco Eco-solutions Co.

18

Recycling of MSW Slag

Water-quenched

JIS A 5031 "Melt-solidified slag aggregate for concrete"

- Coverage: Precast concrete
 - Coarse aggregate (MG20-05, MG20-15, MG15-05)
 - Fine aggregate (MS5, MS2.5, MS1.2, MS5-0.3)

Quality

- General
- Environmental Safety Quality (Leaching and Content)
- Chemical composition (CaO, S, SO3, Fe)
- Expansiveness
- Physical properties (Density, Water absorption, Stability, Solid content, and Amount of minute grain)
- Alkali silica reactiveness
- Granularity and fineness modulus
- Pop out

JIS A 5032 "Melt-solidified slag material for road construction"

Coverage: Hot asphalt mixture and base material

- For hot asphalt mixture (SM-20, -13, -5, FM-2.5)
- For base course material (MM-40, -30, -25)
- For subbase course material (CM-40, -30, -20), etc.

Quality

- Externals
- Environmental Safety Quality (Leaching and Content)
- Physical properties (Granularity, Density, Water absorption, and Abrasion loss)
- Corrected CBR (for base and subbase only)

Recycled Materials – concerns about Env. Safety

Construction and Demolition

Surplus Soil Demolished Asphalt Concrete Demolished Concrete Cr(VI) Sludge Discarded Plaster Board, etc. F

Ferrous and Nonferrous Slag

Blast Furnace Slag F BOF Slag F, Cr, (V, Mo) EAF Slag F, Cr, (V, Mo) Copper Slag As, Pb Ferronickel Slag, etc. (Ni)

Coal Combustion Ash

Fly Ash As, B, F, Se, Cr(VI) Clinker (Bottom) Ash

Municipal Wastes and Sewage Sludge Pb

Incinerator Bottom Ash and Melt-solidified Slag Sewage Sludge Treated Residue etc.

Background in establishing "Environmental Safety Quality" for recycled materials

Notice on enforcement after revision of Soil Contamination Countermeasure Act (2011)

"When slag and coal ash are used for civil engineering or road construction, and are used in distinction from the surrounding soil, they are not considered as soil"

- Recycled materials are excluded from the scope of soil environmental standards and soil contamination countermeasure law, so another procedure is necessary to ensure environmental safety quality.
- Management of environmental safety quality is indispensable for all recycled materials, and mutual consistency is important.

"Basic concept" that can be shared among all the recycled materials was proposed.

Comprehensive report by the committee on guideline for introducing chemical substance evaluation method to slags for concrete aggregate and road construction (March 2012 Japan Industrial Standards Committee)

Basic Concept in Set Up of Environmental Safety Quality and Inspection Method for Recycled Materials

- (1) Focus on the most dangerous situation in the material's lifecycle including re-Recycling and landfilling
- (2) Test Items (leaching test, content test) corresponding emission pathways
- (3) Test method simulating utilization condition
- (4) Quality standard complying with the environmental standard of the surroundings
 (5) Effective interview.
- (5) Effective inspection system

Basic Concept 4/5: Quality standard complying with the environmental standard of the surroundings

Environmental media around the recycled material (such as soil and groundwater) should satisfy the environmental standard

Environmental Safety Criteria for Recycled Materials

General applications

	Leaching (mg/L)	1M HCI-Extractable (mg/kg)
Cadmium	0.01	150
Lead	0.01	150
Hex Chromium	0.05	250
Arsenic	0.01	150
Mercury	0.0005	15
Selenium	0.01	150
Fluorine	0.8	4000
Boron	1	4000

Port applications

	Leaching (mg/L)	
Cadmium	0.03	
Lead	0.03	
Hex Chromium	0.15	
Arsenic	0.03	
Mercury	0.0015	
Selenium	0.03	
Fluorine	15	
Boron	20	

- Criteria: Similar with Environmental Standard for Soil and Soil Contamination Countermeasure Act
- Test method: Different from Soil

BC2/5: Test Items (leaching test, content test) corresponding emission pathways

⇒ Pathways to human and the environment Leaching Direct Ingestion

BC3/5: Test method simulating condition of the application

JIS K 0058-1 clause 5. Propeller leaching test

Sample pretreatment:

- Granular material: without size reduction
- Monolith material:
- Cement concrete: 100 mm-D x 200 mm-H test piece Asphalt concrete: 100 mm-D x 63.5 mm-H test piece <5 kg product: as it is

L/S = 10 L/kg, Leachant: pure water Stirring 200 times/min 6 hours

Acid extractable content test

MOE Notification No.19 (2003), JIS K 0058-2 (2006)

BC1/5: Focus on the most dangerous condition through the material's lifecycle

BC5/5: Effective Inspection System – Type Inspection and Delivery Inspection

Delivery Inspection

Speedy Assurance of Environmental Safety Quality on Every Material/Product of the same manufacturing condition

Use the Slag as is For Every Shipping Material/Product Items can be reduced

Structure of Introducing Environmental Safety and Test Methods in "Slag-JIS"

Development to another applications

Test method and Environmental Quality Criteria for Each Category

Category							
	Recycling as "Soil"	Intake	Leaching Path	Test item	item Test method	Environmental Safety Standard	
Α	No	Νο	Sea	Leaching	JIS K 0058-1	Leaching Criteria for Port App	
В	No	Νο	GW	Leaching	JIS K 0058-1	Leaching Criteria for General App	
С	No	Yes	Sea	Leaching	JIS K 0058-1	Leaching Criteria for Port App	
				Content	JIS K 0058-2	Content Criteria	
D	No	Yes	GW	Leaching	JIS K 0058-1の5.	Leaching Criteria for General App	
				Content	JIS K 0058-2	Content Criteria	
E	Yes	Yes Yes	_	Leaching	MoE Notification No.18	Leaching Criteria for General App	
				Content	MoE Notification No. 19	Content Criteria	

Coverage		Publish Amend	Publisher	
General	Comprehensive evaluation me	2012	METI	
	Recycling guid	lelines for port and airport maintenance	2015	MLIT
	JIS A 5011-1 JIS A 5011-2	Slag aggregate for concrete – Part 1: Blast furnace Part 2: Ferro-nickel slag aggregate	2013	Japanese Industrial
	JIS A 5011-3	Part 3: Copper slag aggregate	2016	Standard
Ferrous	JIS A 5011-4	Part 4: Electric furnace oxidized slag aggregate	2016	Committee
Slag,	JIS A 5015	Steel slag for road	2013	
Non Ferrous	JIS A 5031	Melt-solidified slag material for road construction derived from	2013	
Slag,		municipal solid waste and sewage sludge	2016	
IVISW Molten Slag	JIS A 5052	municipal solid waste and sewage sludge	2016	
Worten Slag			2010	Building Material
	J21101 H 8001	Steel making slag crushed stone for civil engineering	2016	Testing Center
	Technical man	2015	Coastal Taska ala mu	
	Technical man construction	2015	Research Center	
	Guideline of c	oal ash mix material in port construction	2011	Japan Coal
	Guideline of c	oal ash mix materials for earthquake reconstruction	2014	and Energy
Coal Ash	Guideline of coal ash mix material for high standard road embankment			Center
	Guideline of c	2016		
Recycled Gypsum	Environmenta using recycled	2014	Gypsum Regeneration Cooperative Association	
Disaster	Evaluation scheme for the utilization of for recycled materials from disaster waste incineration ash as ground materials			Japanese Geotechnical
Waste	Guidelines for waste	effective use of reconstruction materials recycled from disaster	2014	Society

Contents

- Environmental Standard, Countermeasure Law, and Test methods
- Environmental Safety Quality of Recycled Materials in Construction
- Standardization

Standardization of Leaching test

- International Standard
- Japanese Industrial Standard
- Academic Standard

Leaching Tests in ISO/TC 190 Soil quality

ISO 18772:2008 Soil quality -- Guidance on leaching procedures for subsequent chemical and ecotoxicological testing of soils and soil materials

ISO 21268-(1-4):2019 Soil quality -- Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials

Part 1: Batch test using a liquid to solid ratio of 2 l/kg dry matter

Part 2: Batch test using a liquid to solid ratio of 10 l/kg dry matter

Part 3: Up-flow percolation test

Part 4: Influence of pH on leaching with initial acid/base addition

Category of leaching test

Basic Characterization Tests

Up-flow Column Percolation Test

Standardization in ISO

- One standard established in several years
- Project leader writes draft standard
- Ballots and recommendations on the web
- Amended draft to be discussed in annual meeting
- If failed and could not be in time, withdraw, suspend or go back
- Amendments conducted in annual and intermediate meeting
- Direct opinion at the meeting is important to adapt our opinion.
- Significant amendment should be done at early stage
- Every 5 years review after admitted (TS: every 3 years)

ISO/TC 190 Soil quality SC 7 Impact assessment WG 6 Transfer and mobility of components

..... Restructured and Renamed in 2019

Participating Countries

To enhance reliability of recycling

- Appropriate inspection method
 - Test method
 - Evaluated substances
 - Consistent with environmental standards
 - Test frequency
 - Quality control
- Validity of the inspection
 - Certification, Third party check
- Traceability

- Report and record of used location, amount, etc.

Recycling and Environmental Safety Control Promotion of recycling of recycling **Reduce the Consumption of Natural** They might have adverse Resources environmental impact. **Reduce the Consumption** of landfill capacity **Environmental safety** Recycling is important! is important! **Balance Is Necessary.**

Thank you very much for your kind attention.

Hirofumi Sakanakura National Institute for Environmental Studies, Japan sakanakura@nies.go.jp